If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x)^2+(16x)^2=32
We move all terms to the left:
(9x)^2+(16x)^2-(32)=0
We add all the numbers together, and all the variables
25x^2-32=0
a = 25; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·25·(-32)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*25}=\frac{0-40\sqrt{2}}{50} =-\frac{40\sqrt{2}}{50} =-\frac{4\sqrt{2}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*25}=\frac{0+40\sqrt{2}}{50} =\frac{40\sqrt{2}}{50} =\frac{4\sqrt{2}}{5} $
| 1-0.98^x=0.5 | | x+57=5x+21 | | 16g+-11=-5 | | -10x2+5x=0 | | 2s2+8s+8=0 | | 42a^2-26a+4=0 | | 6x+6x+8x=540 | | 4u2+5u+7=0 | | (2x+1)(4x-21)=0 | | x+(0.2x)=18360 | | 4x(5-2)=x2 | | x+(0.2x)=11352 | | 8x^2+4x-21=0 | | 8b^2+256=-96b | | 5x+25=x-3 | | x+(0.2x)=120 | | 2x+25=6x+61 | | 3.296=-0.004d^2+0.144d | | 8n^2+128n=-512 | | 21x^2-39x-6=0 | | D^2=36d-324 | | 21x2-39x-6=0 | | 10x+5(0)=0 | | -0.5y=-2y | | 5x+40=x+100 | | 2(x-5)=4(x+2) | | 5x+15=4x+14 | | 4-2y+3y=9 | | n+4+8=-36 | | (5y+9)(4-y)=0 | | -5x^2-20x+7=0 | | 105^-6v=38 |